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Lawrence Berkeley National Laboratory
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Department of Energy national laboratory
Open, unclassified, basic research
Home to NERSC, the fifth largest supercomputing 
center in the world (7.3 Tflops)
Located in the hills next to University of California, 
Berkeley campus
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LBNL sponsors a wide range of 
computational sciences activities
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Modeling and simulation often involves 
optimization

Predict properties of 
nanostructures or design 
nanostructures with desired 
properties
Protein folding problems 
attempt to construct 3D 
structures from a linear 
sequence (the genome)
These simulation-based 
optimization problems have 
different characteristics than 
standard problems

http://graphics.cs.ucdavis.edu/~okreylos/ResDev/ProtoShop/index.html



World’s tallest elevator!
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Idea is to build an 
elevator 60,000 
miles high to carry 
cargo into space
Concept is based on 
designing 
ultrastrong fiber 
strands from 
carbon nanotubes
These ribbons of 
nanotubes would be 
woven into one 
paper-thin meter-
wide ribbon

1) NY times, Sept. 23, 2003.
2)Tech Wednesday, March 2002
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Molecular structure prediction

A single new drug may 
cost over $500 million to 
develop and the design 
process typically takes 
more than 10 years
There are thousands of 
parameters and 
constraints
There are thousands of 
local minima

Docking model for environmental carcinogen bound 
in Pseudomonas Putida cytochrome P450



Parameter identification

7Mathematics Outside Academida, SACNAS National Conference, Albuquerque, NM, October 2-5, 2003

Find model parameters, 
(satisfying some bounds), 
for which the simulation 
matches the observed 
temperature profiles
Objective function 
consists of computing the 
temperature difference 
between simulation 
results and experimental 
data:
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Optimization can be used in conjunction with 
simulation codes

Input
Filter

Output
Filter

OPTIMIZER
Design Parameters Response



General Optimization Problem
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Optimization Problem Types
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Unconstrained optimization
Bound constrained optimization

Only upper and lower bounds
Sometimes called “box” constraints

General nonlinearly constrained optimization
Equality and inequality constraints
Usually nonlinear

Some special case classes 
Linear programming (function and constraints linear)
Quadratic programming (quadratic function, linear 
constraints)
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Why are simulation-based optimization 
problems different?

Objective function is smooth
Usually true, but simulations can create noisy 
behavior

Twice continuously differentiable
Usually true, but difficult to prove

Constraints are linearly independent or hard
Users can sometimes over-specify or incorrectly 
guess constraints
Require strict feasibility

Expensive objective functions
Dominant cost is evaluation of function
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Energy Minimization Using Limited 
Memory BFGS (LBFGS)

Energy Function: AMBER
Protein 162; 
N = 13728 (4576 Atoms)
LBFGS with M=15
Total number of LBFGS 
iterations = 11656
Total number of function 
evaluations = 11887
Each function evaluation 
takes approximately 5 
CPU sec

Protein T162 (from CASP5)



Amber Function
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EAMBER = EBonds + EAngles + EDihedrals + ENonBonded
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A Physical Approach to Protein Structure Prediction, Crivelli, et.al. Biophysical Journal, Vol 82, 2002.



Energy vs. LBFGS iterations for T162 Problem
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T162 Protein: ||gradient|| by atom
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Distribution of ||gradient|| by atom
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4576 atoms

54 atoms have ||g||2 > 0.5



Protein T162 (from CASP5)
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Initial configuration 
created using 
ProteinShop (S. 
Crivelli)
Energy minimization 
computed using 
OPT++/LBFGS
Final average RMSD 
change was 3.9 Å
Total simulation took 
approximately 32 
hours on a 1.7GHz 
machine



Summary
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Wide range of scientific and engineering 
problems requiring mathematics
Many of these scientific and engineering 
problems involve nonlinear optimization 
problems
Thorough knowledge of both science and 
mathematics is required to address these 
problems - the solution of these problems 
requires interdisciplinary teams, creativity, 
and a little bit of luck.



Questions ?

19
SACNAS National Conference,  Albuquerque, NM, October 2-5, 2003



Backup Slides
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JAZZ Genome Assembler

Assembly of Fugu genome from 
3.1 million reads, and initial 
preparation of mouse genome 
data.
NERSC provided: 

porting of JAZZ assembler, BLAST 
alignment tool, cross_match alignment tool, 
and MySQL client to the IBM SP 
a dedicated MySQL server 
resolved issues installing a MySQL server 
on the IBM SP
consulting support for parallelization of 
BLAST and cross_match tool

Dan Rokhsar, Joint Genome Institute
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Analyzing Cosmic Microwave 
Background Radiation

BOOMERANG Experiments –
analyze cosmic microwave 
background radiation data to 
obtain a better understanding of 
the universe
The data analysis provides 
strong evidence that the 
geometry of the universe is flat
Computational capability 
provided on NERSC platforms
MADCAP software developed 
at NERSC for general 
community

Borrill (LBNL) + CalTech + others.
April 27, 2000
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Parameter identification example

Find model parameters, 
satisfying some bounds, 
for which the simulation 
matches the observed 
temperature profiles
Computing objective 
function requires 
running thermal 
analysis code
Each simulation 
requires approximately 
7 hours on 1 processor
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